
277
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

CI/CD WITH CONTAINERS
As organizations struggle to accelerate the cycles of development 

and delivery of solutions for their customers, many are adopting 

Continuous Integration, Delivery, and Deployment. In this Refcard, 

we’ll try and explain how containers can help you adopt and improve 

these methodologies, but first lets clear up some of the key concepts.

Continuous Integration (CI) refers to the practice of frequently merging 

new software using a single line of code. Continuous Delivery refers 

to the production of packaged software out of code in frequent cycles. 

Likewise, Continuous Deployment refers to the deployment the 

packaged software to a runtime platform in frequent cycles.

While each step of the CI/CD is independent from the others, and some 

teams choose to automate part of the CI/CD chain and manually do the 

other parts, a complete automation of the whole CI/CD pipeline delivers 

the most benefit.

A team that has a completely automated CI/CD cycle in place achieves a 

faster response cycle on code changes. Once code has been merged and 

deployed it is available for testing and verification, leading to accelerated 

DevOps cycles. Problems can be found earlier and working software can 

be delivered to customers faster.

It's worth mentioning that CI/CD automation doesn't necessarily mean 

deployment all the way to your production environment. You can 

also look at deployment to QA environment as the end point where 

automation takes your team, keeping deployment to production as a 

manual step.

Many teams who are adopting Agile rely on an automated CI/CD cycle to 

help them achieve the goals of quickly responding to customer demands 

and producing working, reliable software in short cycles.

A BRIEF HISTORY OF CONTAINERS
The idea of what we now call container technology first 

appeared in 2000 as FreeBSD jails, a technology that allows the 

partitioning of a FreeBSD system into multiple subsystems, or 

jails. Jails were developed as safe environments that a system 

administrator could share with multiple users inside or outside of an 

organization. In a jail, the intent was that processes get created in a 

modified chrooted environment — where access to the filesystem, 

networking, and users is virtualized — and could not escape or 

compromise the entire system. However, jails were limited in 

implementation, and methods for escaping jailed environments were 

eventually discovered.

BROUGHT TO YOU IN PARTNERSHIP WITH

CONTENTS

 ö CI/CD WITH CONTAINERS

 ö A BRIEF HISTORY OF CONTAINERS

 ö WHY USE CONTAINERS?

 ö WHAT ARE DOCKER AND 

KUBERNETES?

 ö THE RELATIONSHIP BETWEEN CI/

CD AND CONTAINERS

 ö HOW TO BUILD A CONTAINER 

ARTIFACT AND DEPLOY TO 

KUBERNETES

 ö SUMMARY

WRITTEN BY SHAY SHMELTZER, DIRECTOR OF PRODUCT MANAGEMENT, ORACLE CLOUD

WRITTEN BY ANDREA MORENA, DIRECTOR OF PRODUCT MANAGEMENT, ORACLE CLOUD

CI/CD With 
Containers

Try Docker and 
Kubernetes on  
Oracle Cloud for FREE
Easily manage, store and share containers

START FREE TRIAL

https://quay.io/plans/
https://www.freebsd.org/doc/handbook/jails.html
https://www.freebsd.org/
https://en.wikipedia.org/wiki/Chroot
https://cloud.oracle.com/tryit?source=:ad:ba:::RC_WWMK180430P00020:DzoneRefcardBoxAd&pcode=WWMK180430P00020&SC=ADV


Copyright © 2018, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

ORACLE GROUNDBREAKERS developer.oracle.com 
Membership Is Free | Follow Us on Social:

facebook.com/OracleDevs@groundbreakers 

Join the World’s 
Largest Developer 

Community
 Download the latest software, tools,  
and developer templates

Get exclusive access to hands-on  
trainings and workshops

Grow your network with the Groundbreaker 
Ambassador and Oracle ACE Programs

Publish your technical articles—and  
get paid to share your expertise

https://twitter.com/groundbreakers
http://facebook.com/OracleDevs


D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

CI/CD WITH CONTAINERS

BROUGHT TO YOU IN PARTNERSHIP WITH

Very quickly, more technologies combined to make this isolated 

approach a reality. Control groups (cgroups) is a kernel feature that 

controls and limits resource usage for a process or groups of processes. 

And systemd, an initialization system that sets up the userspace and 

manages their processes, is used by cgroups to provide greater control 

over these isolated processes. Both of these technologies, while adding 

overall control for Linux, were the framework for how environments 

could successfully stay separated.

Advancements in kernal namespaces provided the next step for 

containers. With kernel namespaces, everything from process IDs to 

network names could be virtualized within the Linux kernel. One of 

the newer ones, User namespaces, "allow per-namespace mappings 

of user and group IDs. In the context of containers, this means that 

users and groups may have privileges for certain operations inside 

the container without having those privileges outside the container." 

The Linux Containers project (LXC) then added some much-needed tools, 

templates, libraries, and language bindings for these advancements — 

improving the user experience when using containers. LXC made it easy 

for users to start containers with a simple command line interface.

Put simply, a container consists of an entire runtime environment: an 

application (plus all its dependencies), libraries and other binaries, 

and configuration files needed to run it, bundled into one package.

WHY USE CONTAINERS?
Containers are a solution to the problem of how to get software to run 

reliably when moved from one computing environment to another. This 

could be from a developer's laptop to a test environment, from a staging 

environment into production, and perhaps from a physical machine in a 

data center to a virtual machine in a private or public cloud.

There are many container formats available. Docker is a popular open-

source container format that is supported on many platforms.

WHAT ARE DOCKER AND KUBERNETES?
WHAT IS DOCKER?
The word "Docker" refers to several things. This includes an open source 

community project; tools from the open source project; Docker Inc., the 

company that is the primary supporter of that project; and the tools that 

the company formally supports. The fact that the technologies and the 

company share the same name can be confusing.

Docker as a technology added a lot of new concepts and tools — a simple 

command line interface for running and building new layered images, a 

server daemon, a library of pre-built container images, and the concept of 

a registry server. Combined, these technologies allowed users to quickly 

build new layered containers and easily share them with others.

HOW DOES DOCKER WORK?
The Docker technology uses the Linux kernel and features of the kernel, 

like Cgroups and namespaces, to segregate processes so they can run 

independently. This independence is the intention of containers — the 

ability to run multiple processes and apps separately from one another 

to make better use of your infrastructure while retaining the security you 

would have with separate systems.

Container tools, including Docker, provide an image-based deployment 

model. This makes it easy to share an application, or set of services, with 

all of their dependencies across multiple environments. Docker also 

automates deploying the application (or combined sets of processes 

that make up an app) inside this container environment.

These tools built on top of Linux containers — what makes Docker 

user-friendly and unique — gives users unprecedented access to apps, 

the ability to rapidly deploy, and control over versions and version 

distribution.

IS DOCKER TECHNOLOGY THE SAME AS 

TRADITIONAL LINUX CONTAINERS?
No. Docker technology was initially built on top of the LXC technology 

— what most people associate with "traditional" Linux containers — 

though it's since moved away from that dependency. LXC was useful for 

lightweight virtualization, but it didn't have a great developer or user 

experience. The Docker technology brings more than the ability to run 

containers — it also eases the process of creating and building containers, 

shipping images, and versioning of images (among other things).

Traditional Linux containers use an init system that can manage multiple 

processes. This means entire applications can run as one. The Docker 

technology encourages applications to be broken down into their 

separate processes and provides the tools to do that. This granular 

approach has its advantages.

THE ADVANTAGES OF DOCKER CONTAINERS

• Rapid application deployment – containers include the minimal 

runtime requirements of the application, reducing their size and 

allowing them to be deployed quickly.

http://dzone.com/refcardz
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://www.freedesktop.org/wiki/Software/systemd/
https://en.wikipedia.org/wiki/Linux_namespaces
https://lwn.net/Articles/528078/
https://linuxcontainers.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://lwn.net/Articles/528078/
https://linuxcontainers.org/
https://www.redhat.com/en/topics/virtualization


D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

CI/CD WITH CONTAINERS

BROUGHT TO YOU IN PARTNERSHIP WITH

• Portability across machines – an application and all its 

dependencies can be bundled into a single container that is 

independent from the host version of Linux kernel, platform 

distribution, or deployment model. This container can be 

transferred to another machine that runs Docker, and executed 

there without compatibility issues.

• Version control and component reuse – you can track successive 

versions of a container, inspect differences, or roll back to 

previous versions. Containers reuse components from the 

preceding layers, which makes them noticeably lightweight. 

This supports an Agile development approach and helps 

make continuous integration and deployment (CI/CD) a reality 

from a tooling perspective.

• Sharing – you can use a remote repository to share your 

container with others. Oracle provides a registry in the cloud 

for this purpose, and it is also possible to configure your own 

private repository.

• Lightweight footprint and minimal overhead – Docker images are 

typically very small, which facilitates rapid delivery and reduces 

the time to deploy new application containers.

• Simplified maintenance – Docker reduces effort and risk of 

problems with application dependencies.

To allay fears of a single vendor controlling such an important technology, 

Docker Inc. contributed many of the underlying components to 

community-led open-source projects (runc is part of the Open Containers 

Initiative and containerd has been moved to the CNCF).

Today Docker, among other companies such as Oracle, are members of 

the Open Container Initiative (OCI) and are enabling an open industry 

standardization of container technologies.

ARE THERE LIMITATIONS TO USING DOCKER?
Docker, by itself, is very good at managing single containers. When you 

start using more and more containers and containerized apps, broken 

down into hundreds of pieces, management and orchestration can 

get very difficult. Eventually, you need to take a step back and group 

containers to deliver services — networking, security, telemetry, etc. — 

across all of your containers. That's where Kubernetes comes in.

WHAT IS KUBERNETES?
Kubernetes, or k8s, is an open source platform that automates Linux 

container operations. It eliminates many of the manual processes 

involved in deploying and scaling containerized applications. In other 

words, you can cluster together groups of hosts running Linux containers, 

and Kubernetes helps you easily and efficiently manage those clusters. 

These clusters can span hosts across public, private, or hybrid clouds.

Kubernetes was originally developed and designed by engineers at 

Google. Google was one of the early contributors to Linux container 

technology and has talked publicly about how everything at Google 

runs in containers. Google donated the Kubernetes project to the newly 

formed Cloud Native Computing Foundation in 2015.

WHY DO YOU NEED KUBERNETES?
A rudimentary application of Linux containers treats them as fast, 

efficient virtual machines. Once you scale this to a production 

environment and multiple applications, it's clear that you need 

multiple, collocated containers working together to deliver the 

individual services. This significantly multiplies the number of 

containers in your environment, and as those containers accumulate, 

the complexity also grows.

Real production applications span multiple containers. Those containers 

must be deployed across multiple server hosts. Kubernetes gives you 

the orchestration and management capabilities required to deploy 

containers at scale for these workloads. Kubernetes orchestration allows 

you to build application services that span multiple containers, schedule 

those containers across a cluster, scale those containers, and manage 

the health of those containers over time.

Master: The machine that controls Kubernetes nodes. This is where all 

task assignments originate.

Node: These machines perform the requested, assigned tasks. The 

Kubernetes master controls them.

Pod: A group of one or more containers deployed to a single node. All 

containers in a pod share an IP address, IPC, hostname, and other 

resources. Pods abstract network and storage away from the underlying 

container. This lets you move containers around the cluster more easily.

Replication controller:  This controls how many identical copies of a 

pod should be running somewhere on the cluster.

Service: This decouples work definitions from the pods. Kubernetes 

service proxies automatically get service requests to the right pod — no 

matter where it moves to in the cluster or even if it's been replaced.

Kubelet: This service runs on nodes and reads the container manifests 

and ensures the defined containers are started and running.

kubectl: This is the command line configuration tool for Kubernetes.

WHAT CAN YOU DO WITH KUBERNETES?

• Orchestrate containers across multiple hosts.

• Make better use of hardware to maximize resources needed to 

run your enterprise apps.

http://dzone.com/refcardz
https://www.opencontainers.org/
https://www.opencontainers.org/
https://www.cncf.io/
https://www.opencontainers.org/
https://www.cncf.io/


D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

CI/CD WITH CONTAINERS

BROUGHT TO YOU IN PARTNERSHIP WITH

• Control and automate application deployments and updates.

• Mount and add storage to run stateful apps.

• Scale containerized applications and their resources on the fly.

• Declaratively manage services, which guarantees the deployed 

applications are always running how you deployed them.

• Health-check and self-heal your apps with autoplacement, 

autorestart, autoreplication, and autoscaling.

THE RELATIONSHIP BETWEEN CI/CD AND 
CONTAINERS
The advent of continuous integration and continuous delivery (CI/CD) 

has revamped the traditional application development process in a 

drastic way. The CI/CD-based process involves DevOps — the paradigm 

shift that brings developers, QA engineers, and operations managers 

together on one platform. It generates frequent feedback at every 

stage and follows an automated process across your build, test, and 

production environments.

But can the CI/CD-based application development process be improved 

even further? The most modern approach is to use containerization to 

bring even more flexibility and benefits.

Bringing containerization to CI/CD has several advantages over the 

traditional software development process as well as the CI/CD-based 

software development process:

• Containers are a lightweight and ready to run portable 

software: optimum use of the infrastructure and much faster 

application deployment.

• One-click infrastructure provisioning and 

decommissioning: quick and dirty dev and test environment for 

CI/CD pipelines.

• Faster and error-proof deployment: removes all technical 

snags related to driver compatibility, library conflicts etc.

• Reduce time and costs associated with the dependency between 

Development and Operations (e.g for release management).

• Eliminate restrictions on using tools, frameworks, and testing 

suites. Enterprises have the freedom to choose whichever tools 

they want to use.

• Automation: The CI/CD framework over containers can 

automatically build, package, and deploy applications. This also 

completely obviates manual errors.

HOW TO BUILD A CONTAINER ARTIFACT AND 
DEPLOY TO KUBERNETES
DEFINE A BUILD JOB
Build jobs are the way you define automated tasks that your CI/CD 

platforms execute. For this Refcard, we'll use Oracle Developer Cloud 

Service as an example, which provides a CI/CD engine that orchestrates 

and executes these build jobs. Developer Cloud Service can also 

automate CI/CD for various types of software deliverables, but in this 

section, we'll focus on automating the cycle for Docker containers.

A build job for Docker containers can include several steps – all of 

them leverage the Docker command line to execute activities on your 

definition files and the images generated from them.

First, you'll want to build the Docker image to verify that it is configured 

properly. In the build step, you configure where the definition files are 

located (for example, in your Git repository's root directory). You might 

want to add a specific tag to your image so you can easily manage 

multiple versions. This can be done either as part of the build or in an 

independent build step.

Next. you might want to publish the built Docker image to a repository 

of images – which might mean that you'll want to first login into that 

repository. There are public repositories, such as DockerHub, as well 

as private repositories, such as the one provided by the Oracle Cloud 

Infrastructure Registry.

In Developer Cloud Service, you can sequence all of these steps in a 

single build job or break them into separate jobs. Developer Cloud 

Service also supports a variety of other Docker commands, and all of 

them can be defined in a declarative way, reducing chances of errors in 

your build scripts.

A simple set of steps defined in a declarative way in Developer Cloud 

Service to publish a Docker image to Oracle's Docker Registry

Another option is to just write a shell script with the Docker commands 

manually and execute it in your CI/CD flow.

TIE THE BUILD JOB TO YOUR GIT REPOSITORY
Adopting the "Infrastructure as Code" approach means that your 

http://dzone.com/refcardz


D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

CI/CD WITH CONTAINERS

BROUGHT TO YOU IN PARTNERSHIP WITH

Docker container definition files should reside in a version management 

repository, like any other piece of code your team produces.

In Developer Cloud Service, you can tie your build jobs to hook up with 

your Git-based source code repositories. You can dedicate specific build 

jobs for specific branches of your code.

AUTOMATE EXECUTION OF BUILD JOB
Usually, you'll aim for the build job to automatically execute whenever 

someone changes the code that your CI/CD relies on. This will mean 

hooking up your source repository with your build job through your CI/

CD engine.

Some teams automate execution of Docker builds based on a schedule. 

For example every night, after the team is done with that day's 

development effort, a build job will pick up the latest changes and 

deploy them on QA instances.

In Oracle Developer Cloud Service, for example, you can check a box that 

tells a build job to automatically start when a change has been made to 

a specific branch of your Git repository. You'll usually associate this with 

changes to the master branch, which will contain code that is "production 

ready" and has passed peer review. Alternatively, you can set a schedule 

for your build jobs to automate execution based on a specific schedule.

Build job configured to pick code from a specific branch of the git ository 

and execute automatically when changes have been done to this branch.

AUTOMATE KUBERNETES CLUSTER DEPLOYMENT 
WITH TERRAFORM
Now that we have created the Docker containers and published them, 

the next step is getting them deployed and running on a Kubernetes 

Cluster. First, we'll want to provision this environment.

Getting a Kubernetes cluster up and running, let alone a production-

ready one, has not historically been quite as straightforward. While 

purists (and those learning Kubernetes) might choose to stand up 

a Kubernetes cluster the hard way – most of us are looking for easy 

and automated ways to make this happen. There have been a (large) 

number of projects from the vendor and Kubernetes community in this 

area, many in various stages of ongoing development. 

The Terraform Kubernetes Installer is an open source Terraform 

template for easily standing up a Kubernetes Cluster on Oracle Cloud 

Infrastructure (OCI). This allows customers to combine the production-

grade container orchestration of Kubernetes with the control, security, 

and predictable performance of a cloud platform. 

WHAT IT DOES

The Terraform Kubernetes Installer provides a set of Terraform 

modules and sample base configurations to provision and configure a 

highly available and configurable Kubernetes cluster on Oracle Cloud 

Infrastructure (OCI). This includes a Virtual Cloud Network (VCN) and 

subnets, instances for the Kubernetes control plane to run on, and Load 

Balancers to front-end the etcd and Kubernetes master clusters. 

The base configuration supports a number of input variables that allow 

you to specify the Kubernetes master and node shapes/sizes and how 

they are placed across the underlying availability domains (ADs). 

You can specify Bare Metal shapes (no hypervisor!) in addition to VM 

shapes to leverage the full power and performance of OCI for your 

Kubernetes clusters. The nodes are also labeled intelligently, like 

with the Availability Domain, to support Kubernetes multi-zone 

deployments so that the Kubernetes scheduler can spread pods across 

availability domains. You can also add and remove nodes from your 

cluster using Terraform as documented in the README. 

If your requirements extend beyond the base configuration, the modules 

can also be used to form your own customized configuration.

PROVISION A KUBERNETES CLUSTER VIA CLI

Prerequisites

1. Download and install [Terraform] (terraform.io/) (v0.10.3 or later).

2. Download and install the [OCI Terraform Provider] (github.com/

oracle/terraform-provider-oci/releases) (v2.0.0 r later).

3. Create an Terraform configuration file at ~/.terraformrc that 

specifies the path to the OCI provider.

4. Ensure you have Kubectl  installed if you plan to interact with the 

cluster locally.

http://dzone.com/refcardz
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/oracle/terraform-kubernetes-installer/
https://kubernetes.io/docs/admin/multiple-zones/
https://kubernetes.io/docs/admin/multiple-zones/
https://github.com/oracle/terraform-kubernetes-installer/blob/master/README.md
https://terraform.io/
https://github.com/oracle/terraform-provider-oci/releases
https://github.com/oracle/terraform-provider-oci/releases
https://kubernetes.io/docs/tasks/tools/install-kubectl/


D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

CI/CD WITH CONTAINERS

BROUGHT TO YOU IN PARTNERSHIP WITH

CUSTOMIZE THE CONFIGURATION 

Create a terraform.tfvars file in the project root that specifies your 

configuration. 

# start from the included example 

$ cp terraform.example.tfvars terraform.tfvars 

• Set mandatory OCI input variables relating to your tenancy, user, 

and compartment.

• Override optional input variables to customize the default 

configuration.

Deploy the Kubernetes cluster 

$ terraform init 

$ terraform plan 

$ terraform apply

ACCESS THE CLUSTER 

Typically, this takes around 5 minutes after the terraform apply and 

will vary depending on the overall configuration, instance counts, and 

shapes. A working kubeconfig can be found in the ./generated folder or 

generated on the fly using the kubeconfig Terraform output variable.

PROVISION A KUBERNETES CLUSTER AUTOMATICALLY IN A CI 
/ CD PIPELINE

Oracle Developer Cloud Service supports HashiCorp Terraform in the 

build pipeline to provision Oracle Cloud Infrastructure as part of the 

build pipeline's automation.

To execute the Terraform scripts that, for example, provision a 

Kubernetes cluster as part of a CI/CD pipeline, you need to upload the 

scripts to the Git repository.

PUSHING SCRIPTS TO GIT REPOSITORY ON ORACLE DEVEL-
OPER CLOUD

Command_prompt:> cd <path to the Terraform script

folder>

Command_prompt:> git init

Command_prompt:> git add –all

Command_prompt:> git commit –m "<some commit 

message>"

Command_prompt:> git remote add origin <Developer 

cloud Git repository HTTPS URL>

Command_prompt:>  git push origin master

HOW TO CREATE A TERRAFORM BUILD JOB

1. Open your Developer cloud Service Project

2. Go to Build

3. Add 'New Job'

4. Give it a name and choose your software template

5. Configure your Job

6. In 'Source Control' add your Source Control Git and select your > 

Terraform Repository

7. Go to the 'Builders' tab and add a 'Builder' Unix Shell Builder. > 

Here you type your needed commands.

8. Go to the 'Post Build' tab and under 'Post Build Actions' select > 

'Artifact Archiver' and type what file(s) you want to add to the > 

Archive after the build.

9. Now Save it.

10. Now you can run your job.

11. You can use the 'Build Log' to check what is going on and the 

Compute Service Console to see the output.

http://dzone.com/refcardz
https://github.com/oracle/terraform-kubernetes-installer/blob/master/docs/input-variables.md#mandatory-input-variables
https://www.amazon.com/Executing-Data-Quality-Projects-Information/dp/0123743699


D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

8

CI/CD WITH CONTAINERS

BROUGHT TO YOU IN PARTNERSHIP WITH

DEPLOY CONTAINER ARTIFACTS FROM A REGISTRY 
TO KUBERNETES (TARGET ENVIRONMENT) 
To deploy Docker images to a Kubernetes environment, you'll use the 

kubectl command line and create scripts that you can then run as part of 

your CD process.

The most important command is the kubectl create command, which 

deploys an application from a definition file. You can use the kubectl get 

commands to monitor the nodes, services, and pods you create. Note 

that you'll want to have access to the kubeconfig file for the cluster you 

are working on.

Below you can see an example shell script that was used to deploy a 

Docker image to a cluster.

kubectl get nodes
kubectl create -f nodejs_micro.yaml
sleep 120
kubectl get services nodejsmicroJODU-k8s-service
kubectl get pods

kubectl describe pods

In Developer Cloud Service you can define a pipeline which links the build 

job that builds the Docker image with a second build job that uses a shell 

script (similar to the one above) to deploy that image to the cluster.

SUMMARY
Containers improve and simplify the Continuous Integration and 

Continuous Delivery cycle. Combining a cloud runtime platform 

for Docker and Kubernetes with an end-to-end DevOps automation 

platform allows you to effectively leverage these technologies, thereby 

improving your team's development and deployment cycles.

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399     919.678.0300

Copyright © 2018 DZone, Inc. All rights reserved. No part of this publication 
may be reproduced, stored in a retrieval system, or transmitted, in any form 
or by means electronic, mechanical, photocopying, or otherwise, without 
prior written permission of the publisher.

DZone communities deliver over 6 million pages each month 

to more than 3.3 million software developers, architects 

and decision makers. DZone offers something for everyone, 

including news, tutorials, cheat sheets, research guides, feature 

articles, source code and more. "DZone is a developer’s dream," 

says PC Magazine.

Written by Shay Shmeltzer , Director of Product Management, Oracle Cloud Development Tools
Shay Shmeltzer is Director of Product Management for Oracle Cloud Development Tools. He is focused on helping developers 

simplify and streamline their work leveraging Oracle solutions. Shay frequently presents at industry events, publishes many 

articles, and regularly blogs at blogs.oracle.com/author/shay-shmeltzer. You can also find him on Twitter at @JDevShay.

Written by Andrea Morena , Director of Product Management,Oracle Cloud
Andrea Morena is a Director of Product Management for Oracle Cloud with 25 years’ experience working for leading IT 

& Cloud vendors, including Sun Microsystems, Red Hat, Huawei and Oracle. In his current role at Oracle, he supports 

Oracle Cloud sales, demand, and adoption providing regional product management activities. He is an expert-CXO level 

communicator and influencer including Technical and Business Decision Makers. @AndreaMorena5

http://dzone.com/refcardz
http://www.dzone.com
https://blogs.oracle.com/author/shay-shmeltzer.
https://twitter.com/JDevShay
https://twitter.com/AndreaMorena5

